

Typical Features

- Wide input voltage range 4:1
- ◆Efficiency up to 91%
- ◆Low no-load power consumption
- ◆Operating Temperature from -40°C to +105°C
- High isolation voltage 3000VAC(input-output) & 2100VAC(input-case)
- ◆Input under voltage protection, output over voltage, short circuit, over current and over temp protections
- Standard 1/4 brick size

Conform to CE

ZCD50-110S24A is a high-performance DC-DC converter specially designed for the railway field. Its rated input voltage 110VDC (full range from 43V to 160VDC), regulated single output 24V/50W without minimum load limit. It has the advantages of high isolation voltage, Max operating temperature up to 105°C, with input under-voltage protection, output over-current, over-voltage, over-temperature and short circuit protections, input remote control, output voltage distal end compensation and output voltage Trim, etc.

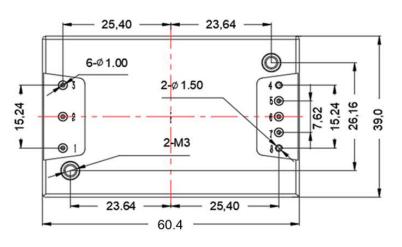
Typical Product List								
	Input voltage	Output	Output	Output	Ripple &	Full load		
Part No.	range	power	voltage	current	Noise	efficiency (%)	Remarks	
	(VDC)	(W)	(VDC)	(A)	(mVp-p)	Min/Typ.		
ZCD50-110S24AC		IAC						Standard
ZCD50-110S24AN							Positive logic	
					Stand	Standard		
	43-160	50	24	2.1	240	89/91	Negative logic	
ZCD50-110S24AC-H	43-100	30	24	2.1			Heatsink	
20000-11002-710-11	0-110324/40-11						Positive logic	
ZCD50-110S24AN-H							Heatsink	
							Negative logic	

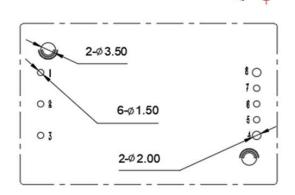
Input Specifications					
Item	Operating conditions	Unit			
Max input current	Input voltage 43Vdc, full load output			1.3	Α
No load input current	Rated input voltage			10	mA
Input Inrush voltage (1sec. max.)	The unit could be permanently damaged by input over this Voltage	-0.7		185	
Start-up voltage	43		43	VDC	
Input under voltage protection	With No-load (over current protection will work in advance at full load)			42	
D. A. O. A. L.(ONT)	Positive logic - CNT no connection or connect to 3.5-15V to turn on, connect to 0-1.2V to shut off the converter.				
Remote Control (CNT)	Negative logic - CNT no connection or connect to 3.5-15 to turn on the converter.	voltage -Vin			

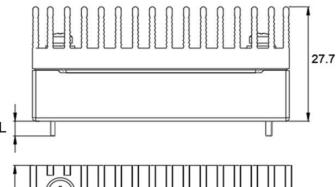
Output Specifications					
Item	Operating conditions	Min.	Тур.	Max.	Unit
Output Voltage Accuracy	Nominal input voltage, 10%-100% load		±0.2	±1.0	
Line Regulation	Full load, input voltage from low to high		±0.1	±0.2	%
Load Regulation	Nominal input voltage, 10%-100% load		±0.2	±0.5	
Transient recovery time	05% land step show as (step sets 44/50.0)		200	250	uS
Transient Response Deviation	25% load step change (step rate 1A/50uS)	-5		+5	%
Temperature Drift Coefficient	Full load	-0.02		+0.02	%/°C
Ripple & Noise	20M bandwidth, external capacitor above 220uF		150	240	mVp-p
Output voltage adjustment (TRIM)		-20		+10	%
Output voltage distal end compensation (Sense)				+5	%
Over temp protection	Maximum temperature of the metal base	105	115	125	°C
Over voltage protection		125		140	%
Over current protection		3.4		4.4	Α
Short circuit protection		Hiccup, continuous, self-recovery			

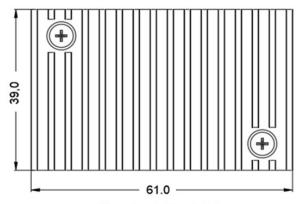
General Specifications							
Item	Operating of	conditions	Min.	Тур.	Max.	Unit	
	I/P-O/P	Test 1min, leakage current <3mA			3000	VAC	
Isolation Voltage	I/P-Case	Test 1min, leakage current <3mA			2100	VAC	
	O/P-Case	Test 1min, leakage current <3mA			500	VAC	
Insulation resistance	I/P-O/P	@ 500VDC	100			ΜΩ	
Switching frequency				250		KHz	
MTBF			150			K hours	

Environmental characteristics						
Item	Operating conditions	Min.	Тур.	Max.	Unit	
Operating Temperature	Refer to the Temperature Derating Graph	-40		+105	°C	
Storage Humidity	No condensing	5		95	%RH	
Storage Temperature		-40		+125		
Pin Soldering temperature	1.5mm from the case, soldering time< 1.5S			+350	°C	
Cooling requirement		EN60068	EN60068-2-1			
Dry heat requirement		EN60068	EN60068-2-2			
Damp heat requirement		EN60068	EN60068-2-30			
Shock and vibration		IEC/EN 6	1373 C1/B	ody Mounted	d Class B	


EMC Per	formances			
	EN50121-3-2		150kHz-500kHz 79dBuV	
EN41	CE	EN55016-2-1	500kHz-30MHz 73dBuV	
EMI	RE	EN50121-3-2	30MHz-230MHz 40dBuV/m at 10m	
	KE	EN55016-2-1	230MHz-1GHz 47dBuV/m at 10m	
	ESD	IEC/EN61000-4-2/GB/T 17626.2-2006	Contact ±6KV/Air ±8KV	perf. Criteria A
	RS	IEC/EN61000-4-3/GB/T 17626.3-2006	10V/m	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4/GB/T 17626.4-2008	±2kV 5/50ns 5kHz	perf. Criteria A
	Surge	IEC/EN61000-4-5/GB/T 17626.5-2008	Line to line \pm 1KV (42 Ω , 0.5 μ F)	perf. Criteria A
	CS	IEC/EN61000-4-6/GB/T 17626.6-2008	0.15MHz-80MHz 10 Vr.m.s	perf. Criteria A


Physical Characteristics					
Case Materials	Metal bottom shell + plastic case in black, flame class UL94 V-0				
Heat sink	Dimension 61.0x39.0x15.0 mm, weight 52g, aluminum alloy, anodized black				
Cooling method	Conduction cooling or forced air cooling with fan				
Unit Weight	Standard 72g, with heatsink 125g				

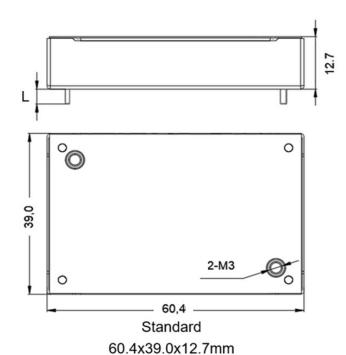


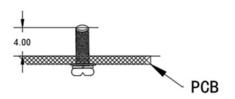

Mechanical Dimensions and Pin-Out description

Recommended PCB holes size

Standard+Heatsink 61.0x39.0x27.7mm

Note: Unit: mm

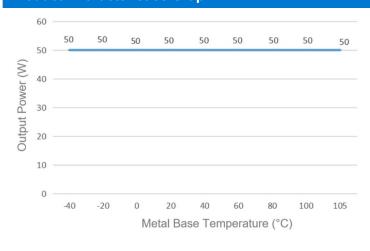

Pin 1,2,3,5,6,7 diameter: 1.00

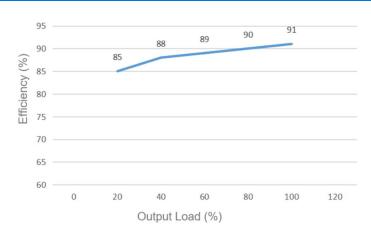

Pin 4,8 diameter: 1.50

Tolerance: X.X ±0.50mm, X.XX ±0.10mm

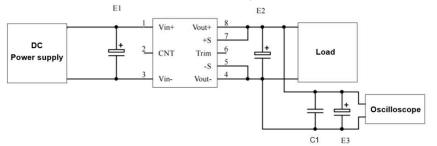
Screwing torque: 0.4N.m Max

Pin length L=3.7mm




No.	1	2	3	4	5	6	7	8
Pin-out	Vin+	CNT	Vin-	Vout-	-Sense	TRIM	+Sense	Vout+
Description	Input V+	Remote	Input V-	Output V-	Output distal end	Output	Output distal end	Output V+
Description	IIIput v+	Control	iliput v-	Output v-	compensation S-	Voltage Trim	compensation S+	Output v+

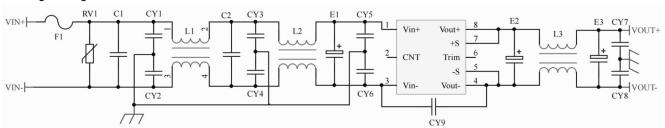
Product Characteristics Graph


Note:

- 1. The output power and the efficiency in the graphs are tested with typical values.
- 2. The data in the temperature derating graph is tested at Aipu laboratory test conditions. It is recommended to keep the temperature of the metal base not more than 100 °C while the converter operates at the rated load for the application.

Recommended circuits for application

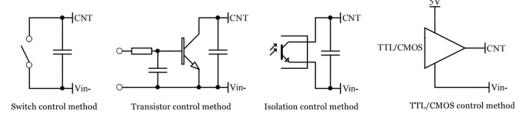
1. Ripple and Noise


All this series of converters will be tested according to the circuit below before shipping.

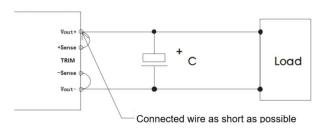
Capacitance Output Volt.	E1 (µF)	E2 (µF)	C1 (µF)	E3 (µF)
3.3VDC		1000		
5VDC		680	1	
12VDC	100			
		220	1	10
48VDC				
	68	10 10		
110VDC	68	68		

2. Typical application circuit

If this circuit recommended below is not adopted, please connect an electrolytic capacitor \ge 47µF in parallel at the input to suppress the possible surge voltage.

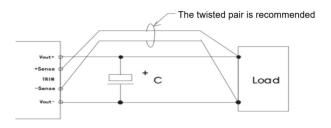


F1	T6.3A/250V, Time-delay fuse
RV1	14D 200V Varistor
C1, C2	105/250V Polyester Film Capacitor
CY1, CY2, CY3, CY4, CY5, CY6	102/250Vac Y2 capacitor
CY7, CY8	103/2KV Ceramic Capacitor
CY9	471/250Vac Y1 capacitor
E1	47μF/200V Electrolytic Capacitor
E2, E3	220μF/35V Electrolytic Capacitor
L1, L2	>5mH, temperature rise less than 25°@1.8A
L3	>220uH, temperature rise less than 25°@2.1A



3. Remote control (CNT) application

4. Application for Sense


1) With NO distal end compensation

Notes:

- 1. Vout+ & Sense+, Vout- & Sense- should be shorted when distal compensation is not needed
- 2. The lead wire between Vout+ and Sense+, Vout- and Sense- should be as short as possible, and close to the pins, or else the output may be unstable.

2) With distal end compensation

Notes:

- 1. The output voltage may be unstable if the compensation cables are too long.
- 2. The twisted pair or shielded cables are recommended, the cable length should be as short as possible.
- 3. Wide copper path on PCB or thick lead wires between the power supply and the load should be used to achieve the line voltage drop <0.3V. The target is to keep output voltage within the specified range.
- 4. The leads wire resistance may create the output voltage oscillation or larger ripples. Please verify it before to use.

5. TRIM & TRIM resistance calculation

The calculation of $\triangle U$ and Rup & Rdown:

Rup=70/ \triangle U-5.1 (K Ω)

Rdown= $28*(24-2.5-\triangle U)/\triangle U$ -5.1 (K Ω)

Voltage-up: Add Rup between Trim and Vout-

Voltage-down: Add Rdown between Trim and Vout+

6. This converter is not available for connection in parallel to increase the output power. Please contact Aipu technician for this kind of requirement.

Others

- 1. The product warranty period is two years. The failed product can be repaired/replaced free of charge if it operates at normal condition. A paid service shall be also provided if the product failed after operating under wrong or unreasonable conditions.
- 2. Aipupower can provide customization design and filter modules for matching, please contact our technician for details.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821

E-mail: sales@aipu-elec.com Website: www.aipupower.com